
Online or onsite, instructor-led live Big Data training courses start with an introduction to elemental concepts of Big Data, then progress into the programming languages and methodologies used to perform Data Analysis. Tools and infrastructure for enabling Big Data storage, Distributed Processing, and Scalability are discussed, compared and implemented in demo practice sessions.
Big Data training is available as "online live training" or "onsite live training". Online live training (aka "remote live training") is carried out by way of an interactive, remote desktop. Israel onsite live Big Data trainings can be carried out locally on customer premises or in NobleProg corporate training centers.
NobleProg -- Your Local Training Provider
Testimonials
The fact that all the data and software was ready to use on an already prepared VM, provided by the trainer in external disks.
vyzVoice
Course: Hadoop for Developers and Administrators
The trainer was so knowledgeable and included areas I was interested in.
Mohamed Salama
Course: Data Mining & Machine Learning with R
Very tailored to needs.
Yashan Wang
Course: Data Mining with R
Richard is very calm and methodical, with an analytic insight - exactly the qualities needed to present this sort of course.
Kieran Mac Kenna
Course: Spark for Developers
I like the exercises done.
Nour Assaf
Course: Data Mining and Analysis
The hands-on exercise and the trainer capacity to explain complex topics in simple terms.
youssef chamoun
Course: Data Mining and Analysis
The information given was interesting and the best part was towards the end when we were provided with Data from Durex and worked on Data we are familiar with and perform operations to get results.
Jessica Chaar
Course: Data Mining and Analysis
I mostly liked the trainer giving real live Examples.
Simon Hahn
Course: Administrator Training for Apache Hadoop
I genuinely enjoyed the big competences of Trainer.
Grzegorz Gorski
Course: Administrator Training for Apache Hadoop
I genuinely enjoyed the many hands-on sessions.
Jacek Pieczątka
Course: Administrator Training for Apache Hadoop
I thought that the information was interesting.
Allison May
Course: Data Visualization
I really appreciated that Jeff utilized data and examples that were applicable to education data. He made it interesting and interactive.
Carol Wells Bazzichi
Course: Data Visualization
Learning about all the chart types and what they are used for. Learning the value of cluttering. Learning about the methods to show time data.
Susan Williams
Course: Data Visualization
Trainer was enthusiastic.
Diane Lucas
Course: Data Visualization
I really liked the content / Instructor.
Craig Roberson
Course: Data Visualization
I am a hands-on learner and this was something that he did a lot of.
Lisa Comfort
Course: Data Visualization
I liked the examples.
Peter Coleman
Course: Data Visualization
I liked the examples.
Peter Coleman
Course: Data Visualization
I enjoyed the good real world examples, reviews of existing reports.
Ronald Parrish
Course: Data Visualization
I really was benefit from the willingness of the trainer to share more.
Balaram Chandra Paul
Course: A practical introduction to Data Analysis and Big Data
We know a lot more about the whole environment.
John Kidd
Course: Spark for Developers
The trainer made the class interesting and entertaining which helps quite a bit with all day training.
Ryan Speelman
Course: Spark for Developers
I think the trainer had an excellent style of combining humor and real life stories to make the subjects at hand very approachable. I would highly recommend this professor in the future.
Course: Spark for Developers
Liked very much the interactive way of learning.
Luigi Loiacono
Course: Data Analysis with Hive/HiveQL
It was a very practical training, I liked the hands-on exercises.
Proximus
Course: Data Analysis with Hive/HiveQL
I was benefit from the good overview, good balance between theory and exercises.
Proximus
Course: Data Analysis with Hive/HiveQL
I enjoyed the dynamic interaction and “hands-on” the subject, thanks to the Virtual Machine, very stimulating!.
Philippe Job
Course: Data Analysis with Hive/HiveQL
Ernesto did a great job explaining the high level concepts of using Spark and its various modules.
Michael Nemerouf
Course: Spark for Developers
I was benefit from the competence and knowledge of the trainer.
Jonathan Puvilland
Course: Data Analysis with Hive/HiveQL
I generally was benefit from the presentation of technologies.
Continental AG / Abteilung: CF IT Finance
Course: A practical introduction to Data Analysis and Big Data
Overall the Content was good.
Sameer Rohadia
Course: A practical introduction to Data Analysis and Big Data
Michael the trainer is very knowledgeable and skillful about the subject of Big Data and R. He is very flexible and quickly customize the training meeting clients' need. He is also very capable to solve technical and subject matter problems on the go. Fantastic and professional training!.
Xiaoyuan Geng - Ottawa Research and Development Center, Science Technology Branch, Agriculture and Agri-Food Canada
Course: Programming with Big Data in R
I really enjoyed the introduction of new packages.
Ottawa Research and Development Center, Science Technology Branch, Agriculture and Agri-Food Canada
Course: Programming with Big Data in R
The tutor, Mr. Michael An, interacted with the audience very well, the instruction was clear. The tutor also go extent to add more information based on the requests from the students during the training.
Ottawa Research and Development Center, Science Technology Branch, Agriculture and Agri-Food Canada
Course: Programming with Big Data in R
The subject matter and the pace were perfect.
Tim - Ottawa Research and Development Center, Science Technology Branch, Agriculture and Agri-Food Canada
Course: Programming with Big Data in R
The example and training material were sufficient and made it easy to understand what you are doing.
Teboho Makenete
Course: Data Science for Big Data Analytics
This is one of the best hands-on with exercises programming courses I have ever taken.
Laura Kahn
Course: Artificial Intelligence - the most applied stuff - Data Analysis + Distributed AI + NLP
This is one of the best quality online training I have ever taken in my 13 year career. Keep up the great work!.
Course: Artificial Intelligence - the most applied stuff - Data Analysis + Distributed AI + NLP
It was very hands-on, we spent half the time actually doing things in Clouded/Hardtop, running different commands, checking the system, and so on. The extra materials (books, websites, etc. .) were really appreciated, we will have to continue to learn. The installations were quite fun, and very handy, the cluster setup from scratch was really good.
Ericsson
Course: Administrator Training for Apache Hadoop
Richard's training style kept it interesting, the real world examples used helped to drive the concepts home.
Jamie Martin-Royle - NBrown Group
Course: From Data to Decision with Big Data and Predictive Analytics
The content, as I found it very interesting and think it would help me in my final year at University.
Krishan Mistry - NBrown Group
Course: From Data to Decision with Big Data and Predictive Analytics
The trainer was fantastic and really knew his stuff. I learned a lot about the software I didn't know previously which will help a lot at my job!
Steve McPhail - Alberta Health Services - Information Technology
Course: Data Analysis with Hive/HiveQL
The high level principles about Hive, HDFS..
Geert Suys - Proximus Group
Course: Data Analysis with Hive/HiveQL
The handson. The mix practice/theroy
Proximus Group
Course: Data Analysis with Hive/HiveQL
Fulvio was able to grasp our companies business case and was able to correlate with the course material, almost instantly.
Samuel Peeters - Proximus Group
Course: Data Analysis with Hive/HiveQL
Lot of hands-on exercises.
Ericsson
Course: Administrator Training for Apache Hadoop
Ambari management tool. Ability to discuss practical Hadoop experiences from other business case than telecom.
Ericsson
Course: Administrator Training for Apache Hadoop
I enjoyed the good balance between theory and hands-on labs.
N. V. Nederlandse Spoorwegen
Course: Apache Ignite: Improve Speed, Scale and Availability with In-Memory Computing
I generally was benefit from the more understanding of Ignite.
N. V. Nederlandse Spoorwegen
Course: Apache Ignite: Improve Speed, Scale and Availability with In-Memory Computing
I mostly liked the good lectures.
N. V. Nederlandse Spoorwegen
Course: Apache Ignite: Improve Speed, Scale and Availability with In-Memory Computing
I think the trainer had an excellent style of combining humor and real life stories to make the subjects at hand very approachable. I would highly recommend this professor in the future.
Course: Spark for Developers
This is one of the best quality online training I have ever taken in my 13 year career. Keep up the great work!.
Course: Artificial Intelligence - the most applied stuff - Data Analysis + Distributed AI + NLP
Big Data Course Outlines in Israel
By the end of this training, participants will be able to:
- Set up the necessary environment to start processing big data with Spark, Hadoop, and Python.
- Understand the features, core components, and architecture of Spark and Hadoop.
- Learn how to integrate Spark, Hadoop, and Python for big data processing.
- Explore the tools in the Spark ecosystem (Spark MlLib, Spark Streaming, Kafka, Sqoop, Kafka, and Flume).
- Build collaborative filtering recommendation systems similar to Netflix, YouTube, Amazon, Spotify, and Google.
- Use Apache Mahout to scale machine learning algorithms.
By the end of this training, participants will be able to:
- Install and configure Weka.
- Understand the Weka environment and workbench.
- Perform data mining tasks using Weka.
By the end of this training, participants will be able to:
- Understand the fundamentals of data mining.
- Learn how to import and assess data quality with the Modeler.
- Develop, deploy, and evaluate data models efficiently.
Participants will have the opportunity to put this knowledge into practice through hands-on exercises. Group interaction and instructor feedback make up an important component of the class.
The course starts with an introduction to elemental concepts of Big Data, then progresses into the programming languages and methodologies used to perform Data Analysis. Finally, we discuss the tools and infrastructure that enable Big Data storage, Distributed Processing, and Scalability.
By the end of this training, participants will be able to:
- Learn how to use Spark with Python to analyze Big Data.
- Work on exercises that mimic real world cases.
- Use different tools and techniques for big data analysis using PySpark.
In this instructor-led, live course, we introduce the processes involved in KDD and carry out a series of exercises to practice the implementation of those processes.
Audience
- Data analysts or anyone interested in learning how to interpret data to solve problems
Format of the Course
- After a theoretical discussion of KDD, the instructor will present real-life cases which call for the application of KDD to solve a problem. Participants will prepare, select and cleanse sample data sets and use their prior knowledge about the data to propose solutions based on the results of their observations.
In this instructor-led live training, participants will learn how to use Apache Kylin to set up a real-time data warehouse.
By the end of this training, participants will be able to:
- Consume real-time streaming data using Kylin
- Utilize Apache Kylin's powerful features, rich SQL interface, spark cubing and subsecond query latency
Note
- We use the latest version of Kylin (as of this writing, Apache Kylin v2.0)
Audience
- Big data engineers
- Big Data analysts
Format of the course
- Part lecture, part discussion, exercises and heavy hands-on practice
In this instructor-led, live training, participants will learn how to use Datameer to overcome Hadoop's steep learning curve as they step through the setup and analysis of a series of big data sources.
By the end of this training, participants will be able to:
- Create, curate, and interactively explore an enterprise data lake
- Access business intelligence data warehouses, transactional databases and other analytic stores
- Use a spreadsheet user-interface to design end-to-end data processing pipelines
- Access pre-built functions to explore complex data relationships
- Use drag-and-drop wizards to visualize data and create dashboards
- Use tables, charts, graphs, and maps to analyze query results
Audience
- Data analysts
Format of the course
- Part lecture, part discussion, exercises and heavy hands-on practice
- By the end of this training, participants will be able to:
- Explore data with Excel to perform data mining and analysis.
- Use Microsoft algorithms for data mining.
- Understand concepts in Excel data mining.
In this instructor-led, live training, participants will learn how to install, configure and use Dremio as a unifying layer for data analysis tools and the underlying data repositories.
By the end of this training, participants will be able to:
- Install and configure Dremio
- Execute queries against multiple data sources, regardless of location, size, or structure
- Integrate Dremio with BI and data sources such as Tableau and Elasticsearch
Audience
- Data scientists
- Business analysts
- Data engineers
Format of the course
- Part lecture, part discussion, exercises and heavy hands-on practice
Notes
- To request a customized training for this course, please contact us to arrange.
In this instructor-led, live training, participants will learn the fundamentals of Apache Drill, then leverage the power and convenience of SQL to interactively query big data across multiple data sources, without writing code. Participants will also learn how to optimize their Drill queries for distributed SQL execution.
By the end of this training, participants will be able to:
- Perform "self-service" exploration on structured and semi-structured data on Hadoop
- Query known as well as unknown data using SQL queries
- Understand how Apache Drills receives and executes queries
- Write SQL queries to analyze different types of data, including structured data in Hive, semi-structured data in HBase or MapR-DB tables, and data saved in files such as Parquet and JSON.
- Use Apache Drill to perform on-the-fly schema discovery, bypassing the need for complex ETL and schema operations
- Integrate Apache Drill with BI (Business Intelligence) tools such as Tableau, Qlikview, MicroStrategy and Excel
Audience
- Data analysts
- Data scientists
- SQL programmers
Format of the course
- Part lecture, part discussion, exercises and heavy hands-on practice
In this onsite instructor-led, live training, participants will learn how to integrate Apache Arrow with various Data Science frameworks to access data from disparate data sources.
By the end of this training, participants will be able to:
- Install and configure Apache Arrow in a distributed clustered environment
- Use Apache Arrow to access data from disparate data sources
- Use Apache Arrow to bypass the need for constructing and maintaining complex ETL pipelines
- Analyze data across disparate data sources without having to consolidate it into a centralized repository
Audience
- Data scientists
- Data engineers
Format of the Course
- Part lecture, part discussion, exercises and heavy hands-on practice
Note
- To request a customized training for this course, please contact us to arrange.
High-value government solutions will be created from a mashup of the most disruptive technologies:
- Mobile devices and applications
- Cloud services
- Social business technologies and networking
- Big Data and analytics
IDC predicts that by 2020, the IT industry will reach $5 trillion, approximately $1.7 trillion larger than today, and that 80% of the industry's growth will be driven by these 3rd Platform technologies. In the long term, these technologies will be key tools for dealing with the complexity of increased digital information. Big Data is one of the intelligent industry solutions and allows government to make better decisions by taking action based on patterns revealed by analyzing large volumes of data — related and unrelated, structured and unstructured.
But accomplishing these feats takes far more than simply accumulating massive quantities of data.“Making sense of thesevolumes of Big Datarequires cutting-edge tools and technologies that can analyze and extract useful knowledge from vast and diverse streams of information,” Tom Kalil and Fen Zhao of the White House Office of Science and Technology Policy wrote in a post on the OSTP Blog.
The White House took a step toward helping agencies find these technologies when it established the National Big Data Research and Development Initiative in 2012. The initiative included more than $200 million to make the most of the explosion of Big Data and the tools needed to analyze it.
The challenges that Big Data poses are nearly as daunting as its promise is encouraging. Storing data efficiently is one of these challenges. As always, budgets are tight, so agencies must minimize the per-megabyte price of storage and keep the data within easy access so that users can get it when they want it and how they need it. Backing up massive quantities of data heightens the challenge.
Analyzing the data effectively is another major challenge. Many agencies employ commercial tools that enable them to sift through the mountains of data, spotting trends that can help them operate more efficiently. (A recent study by MeriTalk found that federal IT executives think Big Data could help agencies save more than $500 billion while also fulfilling mission objectives.).
Custom-developed Big Data tools also are allowing agencies to address the need to analyze their data. For example, the Oak Ridge National Laboratory’s Computational Data Analytics Group has made its Piranha data analytics system available to other agencies. The system has helped medical researchers find a link that can alert doctors to aortic aneurysms before they strike. It’s also used for more mundane tasks, such as sifting through résumés to connect job candidates with hiring managers.
If you try to make sense out of the data you have access to or want to analyse unstructured data available on the net (like Twitter, Linked in, etc...) this course is for you.
It is mostly aimed at decision makers and people who need to choose what data is worth collecting and what is worth analyzing.
It is not aimed at people configuring the solution, those people will benefit from the big picture though.
Delivery Mode
During the course delegates will be presented with working examples of mostly open source technologies.
Short lectures will be followed by presentation and simple exercises by the participants
Content and Software used
All software used is updated each time the course is run, so we check the newest versions possible.
It covers the process from obtaining, formatting, processing and analysing the data, to explain how to automate decision making process with machine learning.
Day 2 - explores a range of topics that relate analysis practices and tools for Big Data environments. It does not get into implementation or programming details, but instead keeps coverage at a conceptual level, focusing on topics that enable participants to develop a comprehensive understanding of the common analysis functions and features offered by Big Data solutions.
Day 3 - provides an overview of the fundamental and essential topic areas relating to Big Data solution platform architecture. It covers Big Data mechanisms required for the development of a Big Data solution platform and architectural options for assembling a data processing platform. Common scenarios are also presented to provide a basic understanding of how a Big Data solution platform is generally used.
Day 4 - builds upon Day 3 by exploring advanced topics relatng to Big Data solution platform architecture. In particular, different architectural layers that make up the Big Data solution platform are introduced and discussed, including data sources, data ingress, data storage, data processing and security.
Day 5 - covers a number of exercises and problems designed to test the delegates ability to apply knowledge of topics covered Day 3 and 4.
This course is mostly focused on discussion and presentation of solutions, though hands-on exercises are available on demand.
This instructor-led, live training introduces the challenges of serving large-scale data and walks participants through the creation of an application that can compute responses to user requests, over large datasets in real-time.
By the end of this training, participants will be able to:
- Use Vespa to quickly compute data (store, search, rank, organize) at serving time while a user waits
- Implement Vespa into existing applications involving feature search, recommendations, and personalization
- Integrate and deploy Vespa with existing big data systems such as Hadoop and Storm.
Audience
- Developers
Format of the course
- Part lecture, part discussion, exercises and heavy hands-on practice
The course consists of 8 modules (4 on day 1, and 4 on day 2)
In this instructor-led, live training, participants will learn the mindset with which to approach Big Data technologies, assess their impact on existing processes and policies, and implement these technologies for the purpose of identifying criminal activity and preventing crime. Case studies from law enforcement organizations around the world will be examined to gain insights on their adoption approaches, challenges and results.
By the end of this training, participants will be able to:
- Combine Big Data technology with traditional data gathering processes to piece together a story during an investigation
- Implement industrial big data storage and processing solutions for data analysis
- Prepare a proposal for the adoption of the most adequate tools and processes for enabling a data-driven approach to criminal investigation
Audience
- Law Enforcement specialists with a technical background
Format of the course
- Part lecture, part discussion, exercises and heavy hands-on practice
Attendees will learn during this course how to manage the big data using its three pillars of data integration, data governance and data security in order to turn big data into real business value. Different exercices conducted on a case study of customer management will help attendees to better understand the underlying processes.
By the end of this training, participants will:
- Understand the evolution and trends for machine learning.
- Know how machine learning is being used across different industries.
- Become familiar with the tools, skills and services available to implement machine learning within an organization.
- Understand how machine learning can be used to enhance data mining and analysis.
- Learn what a data middle backend is, and how it is being used by businesses.
- Understand the role that big data and intelligent applications are playing across industries.
By the end of this training, participants will be able to:
- Ingest big data with Sqoop and Flume.
- Ingest data from multiple data sources.
- Move data from relational databases to HDFS and Hive.
- Export data from HDFS to a relational database.
By the end of this training, participants will be able to:
- Install and configure Talend Open Studio for Big Data.
- Connect with Big Data systems such as Cloudera, HortonWorks, MapR, Amazon EMR and Apache.
- Understand and set up Open Studio's big data components and connectors.
- Configure parameters to automatically generate MapReduce code.
- Use Open Studio's drag-and-drop interface to run Hadoop jobs.
- Prototype big data pipelines.
- Automate big data integration projects.
Course goal:
Getting knowledge regarding Hadoop cluster administration
Last Updated: